Paperback
Release Date:15 Feb 2018
ISBN:9781771992206
GO TO CART

Connectionist Representations of Tonal Music

Discovering Musical Patterns by Interpreting Artifical Neural Networks

Athabasca University Press

Previously, artificial neural networks have been used to capture only the informal properties of music. However, cognitive scientist Michael Dawson found that by training artificial neural networks to make basic judgments concerning tonal music, such as identifying the tonic of a scale or the quality of a musical chord, the networks revealed formal musical properties that differ dramatically from those typically presented in music theory. For example, where Western music theory identifies twelve distinct notes or pitch-classes, trained artificial neural networks treat notes as if they belong to only three of four different pitch-classes, a wildly different interpretation of the components of tonal music.

Intended to introduce readers to the use of artificial neural networks in the study of music, this volume contains numerous case studies and research findings that address problems related to identifying scales, keys, classifying musical chords, and learning jazz chord progressions. A detailed analysis of networks is provided for each case study which together demonstrate that focusing on the internal structure of trained networks could yield important contributions to the field of music cognition.

Michael R. W. Dawson is a professor of psychology at the University of Alberta. He is the author of numerous scientific papers as well as the books Mind, Body, World: Foundations of Cognitive Science (2013) and From Bricks to Brains: The Embodied Cognitive Science of LEGO Robots (2010).

Find what you’re looking for...
Stay Informed

Receive the latest UBC Press news, including events, catalogues, and announcements.


Read past newsletters
Current Catalogue
Catalogue Cover   Spring 2018 CDN
Publishers Represented
UBC Press is the Canadian agent for several international publishers. Visit our Publishers Represented page to learn more.